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Abstract 
 

The following paper provides an overview of the fundamental concepts forming a general-

purpose operating system, focusing specifically towards the x86 CPU architecture. It supplies 

the groundwork for initialising a build environment using the C programming language and 

GRUB Multiboot, while provisioning the reader with a strategy for implementing the 

aforementioned concepts; focusing mainly towards memory management and multitasking 

features. The implementation of key operating system features will be detailed, and in order to 

evidence capability of the developed system, code will be tested, and functionality illustrated. 

By the end of the paper, the reader should have acquired all the necessary knowledge to build 

their own minimal operating with all the low-level capabilities of a modern OS. 
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Chapter 1 

Introduction 
 

An operating system is the fundamental system software that manages computer hardware by 

abstracting it for application software to interact with and execute programs elegantly, without 

having to understand awkward and inconsistent hardware interfaces. To put this into 

perspective, an application request to print a document is designated to the operating system, 

which then transmits instructions to print via the printer’s drivers. Thus, the application has no 

need to concern itself with such tasks, rather, the operating system handles the low-level details 

and provides a simpler way for applications to manipulate hardware using common system 

services, libraries, and application programming interfaces (APIs). 

One of the most profound aspects of operating systems is how they vary in design to accomplish 

different activities. Personal computer (PC) operating systems support multimedia applications 

and supply an interactive user interface tailored towards an individual. Mainframes, however, 

are primarily designed to optimise utilisation of resources, while ensuring tasks are executed 

as efficiently as possible [1]. Computers have been developed for a multitude of reasons, from 

operating metropolitan public transport systems to configuring settings for something as 

insignificant as your home refrigerator. In 1965, Gordon Moore observed that the number of 

transistors on an integrated circuit would double every two years [2]. Computer performance 

increased while their size was reduced, resulting in this massive diversification of computers 

and operating systems we have today.  

Operating systems have been in development from the 1940s to this present day [1] and have 

an affluent and impactful history that is still being transcribed. Modern desktop operating 

systems are capable of handling a large number of tasks at the same time, though this has not 

always been the case. Early systems like DOS didn’t provide multitasking. In fact, it wasn’t 

until the 1990s when Microsoft introduced preemptive multitasking as a core attribute to their 

systems; during the development of Windows NT 3.1 and Windows 95, that multitasking 

started to catch on. The Apple Macintosh operating system: Mac OS X, later adopted 

multitasking for all its native applications, and afterwards, other companies followed [3]. 

This paper is an exploration of the development of a general-purpose operating system. It will 

help to clarify rudimentary operating system concepts and will provide the preliminaries for 

building and running a basic operating system. Core operating system features, in particular: 

interrupt handling, memory management, and scheduling, will be investigated and explained 

carefully and in-depth. A comprehensive guide of how to implement a minimalistic operating 

system with the aforementioned features will then be developed, and the resulting 

implementation tested. An operating system with the ability to multitask is one of the many 

practical capabilities a modern operating system should be able to provide. Thus, the project 

will conclude with a simple kernel capable of running multiple processes seemingly at once. 
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1.1 Aims 
 

The aims of this project are as follows: 

• Provide a synopsis of the attributes that form an operating system. 

• Investigate the necessary requirements needed for a basic operating system to function 

for a specific architecture. 

• Review the previously researched requirements and formulate a rough design with 

justified decisions. 

• Produce a procedural guide and implementation of a minimal operating system, 

including dynamic memory allocation and effective multitasking.  

• Examine whether the implemented operating system conforms to the proposed design 

and discuss how it could be improved in the future. 
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Chapter 2 

Background 
 

An operating system is a conglomerate of various data structures and mechanisms. Each 

structure is an intricate segment of the system, containing precise and well-defined inputs, 

outputs, and functions. This section attempts to delineate these concepts and unfold their 

underlying technicalities, enlightening the reader and giving them a clearer understanding of 

what an operating system is composed of.  

Before delving into these concepts, it is important to grasp an understanding of the foundation 

and environment needed for an operating system. Consequently, this chapter diverges. The first 

section discusses the principles of system architecture, system start-up, and build environment 

set-ups. The subsequent section will examine the major components and services of an 

operating system and their ability to support the execution of software applications.  

 

2.1  Computer Architecture 
 

Basic computer architecture makes it possible to attain a functioning operating system. It is 

principal in determining how an operating system is organised, designed and structured. The 

architecture defines memory organization, exceptions, bus structure, IO and the basic 

instruction set. Moreover, the majority of the functions performed by the operating system are 

reliant on the underlying architecture. It exists to define everything at the machine language 

level and to create an abstraction that manages the machine languages complexity and 

inelegance.  

Processor architectures can be divided into two general classifications: Complex Instruction 

Set Computer (CISC) and Reduced Instruction Set Computer (RISC) processors. Intel Pentium 

and Intel x86 are popular CISC type processors and MIPS, Microchip PIC, and ARM are well-

known RISC types. Their main differences are that CISC has the capability to execute 

multistage operations within a single instruction. On the other hand, RISC type processors only 

use a small set of basic instructions [4]. The proceeding sub-chapter will focus on the CISC 

based x86 architecture, due to its popularity in general-purpose computer processors [5]. 

 

2.1.1 x86 architecture 
 

Adoption of the x86 architecture within general-purpose computing has remained impactful 

ever since its arrival in 1978 as part of Intel’s 8086 chip [6]. The architecture has retained its 

dominance of the market through its widespread use and perpetual innovation. For that reason, 

selecting the x86 architecture for a basic operating system will improve the scope for 

compatibility amongst many current systems. In addition, due to its prolificity, a large 
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collaborative community is present to give advice and support to those exploring development 

with this architecture. This paper focuses on the development of a small 32-bit operating 

system; thus, it is logical to examine a version of x86 that supports 32-bit computing.  

Intel Architecture 32 bit (IA-32) is the 32-bit version of the x86 instruction set architecture of 

which provides “extensive support for operating-system and system-development software” 

[7]. Support provided for this includes various modes of operation: real mode, protected mode, 

virtual 8086 mode and system management mode, more commonly known as legacy modes. 

The architecture provides instruction support for memory management, interrupt and exception 

handling, task management, and multi-processor control. This class of processors is heavily 

documented by the Intel Architectures Software Developer’s Manual, [7] which consists of a 

comprehensive collection of detailed instructions on how they can be operated.  

On a final note, the x86 architecture provides protection domains that constitute all permissions 

granted to a specific code source. As a result, the processor’s built-in protection procedures 

prevent user-level applications from accessing kernel-level code. This protection is pragmatic 

for assisting in debugging and detecting software issues during development [7]. Similarly, x86 

provides support and protection for memory allocation constructs. The mechanisms provided 

for segmentation and paging (see section 2.5.2) encourage and support a broader diversification 

of approaches to memory management. In protected mode, protection mechanisms become 

operational at both the segment level and page level. Optional flags can be set in the control 

register that will switch the processors legacy mode to protected mode, enabling segment-

protection mechanisms [7].  

 

2.2 Build Environment 
 

Firstly, to make an operating system, an environment for development must be established. A 

build environment refers to how software is assembled into an executable package. It should 

contain all the required tools and sources that will allow the toolchain (see section 3.1.2) to 

complete the tasks necessary to assemble deliverables. To clarify, toolchains are a set of 

programming tools that permit more advanced software development. A simple toolchain may 

consist of a linker, libraries, a debugger and a compiler, combining to transform source code 

into executables.  

The issue then raised is how executable code can be compiled for a platform other than the one 

on which a compiler is running. This problem is solved by a cross-compiler, also known as a 

retargetable compiler, which runs on a separate platform from the one it is generating an 

executable for. The host platform would be the current operating system being used for 

development, and the target platform is the operating system about to be created. When running 

applications or using shared libraries, a platform must conform to certain regulations. An 

Application Binary Interface (ABI) defines structures and methods that a compiled application 

can use to access external libraries, similarly, to an API but at a lower level [8]. 

This leads us to the System V Application Binary Interface (System V ABI), a specification 

set for compiled application programs as well as a minor environment that supports installation 

scripts. It is a standard ABI used by many Unix operating systems like Linux. The Executable 
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and Linkable Format (ELF) defines the interface between an operating system and an 

application program, whilst conforming to the System V ABI standards. To explain this more 

clearly, when an operating system is instructed to run an application, a certain format is 

expected. It expects the first section of the binary to be an ELF header holding data about 

memory offsets. This is how the application is able to communicate vital data about itself to 

the operating system [8]. 

 

2.3 Bootloader 
  

To fully comprehend the boot-up process, a little foundational knowledge is initially required. 

Firstly, the Basic Input Output System (BIOS) is a type of firmware used during start-up; 

firmware is software that is stored in non-volatile memory. When the computer is booted, the 

BIOS initialises and attempts to find a boot device in the BIOS settings, such as boot sequence, 

date and time, and fan speed, all retained in the complementary metal-oxide-semiconductor 

(CMOS). An initial sector from the boot device, known as sector 0, is loaded into memory and 

executed. The sector contains a Master Boot Record (MBR) program that inspects a partition 

table at the end of the boot sector. A bootloader program is then read into memory from the 

partition.  

To elaborate, the MBR is a traditional standard BIOS format that contains a partition table at 

its end. The table provides the start and end address of each partition. After locating the 

partition marked as ‘active’, the MBR reads in the first block, known as the boot-block, and 

executes it. The bootloader in the boot-block then loads the operating system [3]. Newer 

systems use the GUID Partition Table (GPT) format, forming a part of the Unified Extensible 

Firmware Interface (UEFI) standard [9]. This format is used in BIOS systems limited by MBR 

partition tables, which only use 32-bit logical block addressing of the conventional 512-byte 

disk sectors.  

Now that the background of the boot-up process is understood, the function that the bootloader 

plays can now be perceived clearly. Ultimately, the bootloader is in charge of loading the kernel 

into memory, supplying the kernel with necessary data, transferring control to the kernel, and 

swapping to a more suitable environment. The bootloader dictates the load order of files and 

initialises the first operating system processes. Depending on the architecture, practical data 

for querying video modes, address space mapping, CPU bit length and Global Descriptor 

Tables (GDT) (see section 3.2.1) can be obtained for the kernel.  

Every type of CPU architecture has its own specific instruction set. Thankfully, tools like GNU 

assembler provide a single language to communicate to all the various architecture instruction 

sets, aiding compatibility between architectures [10]. Consequently, this makes it no longer 

necessary to write a bootloader for each architecture that the operating system desires 

compatibility with. GNU assembler’s primary purpose is to assemble the output of the GNU C 

compiler [11] for use by the GNU linker. The linker script combines an ensemble of objects 

and archive files, relocating their data and linking symbol references [12]. 

To pack the operating system into a binary image, it is imperative to link the bootloader script 

with the compiled operating system objects. In 1995, a Multiboot Specification was designed 
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by Erich and Brian Ford to allow any compliant operating system to be booted by any compliant 

bootloader. They were adamant not to augment the already existing number of incompatible 

boot methods, and so GRUB was created [13]. It is a very powerful and flexible bootloader, 

capable of understanding filesystems and kernel executables. Thus, you can load any operating 

system without having to record the physical position of the kernel on the disk. As specified 

by the GRUB manual, additional functions like configuration files, menu interfaces, multiple 

executable formats and filesystem types are supported [13]. An operating system loaded via 

GRUB can be emulated and tested using software like QEMU and BOCHS, due to their 

Multiboot header support.  

 

2.4 Kernel 
 

The kernel is essentially the core of an operating system and the first program loaded after the 

bootloader. Control is passed over from the boot script to the kernel, which then handles the 

rest of the start-up operation. A kernel’s responsibilities are mainly managing IO requests from 

software, sending direct instructions to the CPU, handling hardware peripherals like keyboards 

and speakers, and managing memory. The proceeding content of this sub-chapter will explore 

the role of the kernel in more depth. 

Having full access to all the system hardware, the kernel acts in an elevated system state. It 

resides in a protected memory space known as kernel-space. To put this into perspective, a user 

application executes in user-space and is allotted a subset of the systems resources and memory 

by the kernel. If an application wants to carry out a task, it must do so via system calls; the 

kernel will then act on behalf of the application [14]. In this sense, the kernel acts as a proxy 

between the user applications and system resources, providing a layer of abstraction and 

protection. This layering allows the kernel to control and safely multiplex system resources.  

There is a spectrum of kernel designs that have been tried and tested in operating systems. The 

two most common organisations are monolithic kernels and microkernels [3]. Monolithic 

kernels are implemented as a single process executing in kernel space. MS-DOS, Solaris a Unix 

kernel, and Linux a Unix-like kernel are few of the many existing kernels that follow this 

design. Microkernels, however, separate user applications and kernel system software into 

different address spaces. They communicate through message passing using an inter-process 

communication mechanism (IPC). Mac OS X, Minix 3, and Windows NT are examples of such 

architectures. See figure 1 for an illustration of both kernel structures.  

Most Unix systems are monolithic in design and conform to an IEEE standard known as the 

Portable Operating System Interface (POSIX). The purpose of this standard is to define a 

system call API that all Unix systems should support, with the objective being to provide 

compatibility of application software between operating systems [3]. 
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2.5 Memory Management 
 

The operating system is delegated the task of abstracting a hierarchy of memory into a usable 

model for system functions and programs to utilise [3]. This is known as memory management 

and is crucial for developing a fully functioning and effective kernel. As processes execute, 

they need to be able to store temporary data in order to perform various tasks and calculations. 

Therefore, the kernel must aptly allocate and deallocate these areas of memory on request from 

processes requiring it.  

 

2.5.1  Protection and Allocation of Memory 
 

Memory Management Units (MMUs) are computer hardware units that perform the translation 

of virtual address space to physical address space. This translation prevents process exposure 

to physical memory, liberating them from having to manage shared memory space. Segregating 

these areas of memory allows processes to execute without reading or writing in kernel-space 

or another processes address space. Techniques provided by the MMU, such as arbitrary 

address space layout and private executable space, supply the system with a way to control 

memory access rights and protection.  

There exist a vast number of implementations for allocating memory [1]. One of the simplest 

methods is to divide chunks of memory into fixed-size partitions and allocate each partition to 

a single process. The variable-partition scheme, however, records which parts of memory are 

free or occupied in a table. Altogether, memory is perceived as a single large pool of memory 

known as the heap. A heap is allotted to every process and can dynamically grow using malloc() 

and shrink with free() [15]. 

As a final point, a problem known as the ‘dynamic storage allocation problem’ [1], presents 

the issue of requesting a variety of sized segments from a list of free memory holes. There are 

a few different algorithms that solve this issue; the most commonly used are first-fit, best-fit 

and worst-fit. Data shows that in terms of storage consumption and time reduction, best-fit and 

first-fit are more efficient than the worst-fit strategy [1]. 

Figure 2.1: Common Monolithic and Microkernel organisations.  Figure 1 - Common Monolithic and Microkernel organisations. 
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2.5.2  Memory Management Schemes 
 

There are numerous memory management techniques, ranging from very simple, like single 

contiguous allocation, to greatly sophisticated schemes. This section will focus mainly on two 

very contrasting approaches to memory management called paging and segmentation.  

Segmentation is a memory management scheme that divides logical address space into a 

collection of contiguous differing sized segments. When a memory location is referenced, to 

identify it, we use the segment name and offset. The segmentation function retains a segment 

table that includes metadata about its size and physical address. (see figure 2) Unfortunately, 

because segmented memory is allocated in irregular chunks, it has the problem of 

fragmentation. The issue of fragmentation is widely discussed [3] and a sizeable topic, 

therefore, it will only be covered briefly in this paper. In a nutshell, if memory chunks of 

differing sizes are continuously allocated and deallocated, eventually small portions of memory 

begin to build between adjacent chunks. A lot of systems don’t use segmentation anymore, but 

instead employ paging, though a lot of architectures still support it for backwards compatibility 

[16]. 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, paging is a technique that provides an individual mapping of virtual-to-

physical address spaces. The address space is divided into fixed-size non-contiguous chunks 

known as pages, which are mapped to their corresponding physical address counterparts called 

frames. The mapping is stored in a page table data structure. Paged memory is free from the 

high level of fragmentation that segmentation suffers from because each chunk of memory is 

the same size. This scheme makes use of secondary storage to allow processes to surpass the 

limits of physical memory. Substantially, paging lessens memory wastage, though increases 

overhead because non-contiguous allocation requires address translation. Admiringly, this 

overhead can be subdued through a memory cache called the Translation Lookaside Buffer 

(TLB), which can cache data from paging structures, accelerating the address translation 

procedure [7]. 

Figure 2.2: Illustration of the segmentation process Figure 2 - Illustration of the segmentation process. 
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2.6 Virtual File System 
 

In order to facilitate the interaction between applications and various types of filesystems, 

Unix-like systems adopt the approach of a Virtual File System (VFS). The VFS is a subsystem 

of the kernel that converges user-space applications and file systems, providing interoperability 

between the two (see figure 3). The purpose of the VFS is to create an abstraction between the 

details of how files are stored, and how they can be accessed. The central focus is to extrapolate 

the commonalities of a file system into an individual layer that calls the real filesystems to 

manage the data [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

A file system, according to Robert Love, is “hierarchical storage of data adhering to a specific 

structure” [14]. Unix filesystems like EXT2, are given a specified mount point known as 

namespace, allowing mounted filesystems to appear as nodes in a tree. Modern Unix systems 

endeavour to integrate multiple file systems into a single structure. On the other hand, systems 

for Windows and DOS split the namespace into segments and allocate them drive letters like 

‘C:’ [14]. Accordingly, when a process opens a file, it now knows which file system to forward 

the request to via the notable drive letters. This system type makes no effort to coalesce its 

numerous file systems.  

Files are logical groups of data that are manipulated by processes. Their sizes are varied, and 

so the filesystem must provide mechanisms to handle storing of the non-contiguous blocks 

representing the file. To solve this, filesystems implement techniques to correctly index, 

manage and structure these files. The techniques employed are then abstracted by the operating 

system’s virtual file system [3]. 

 

Figure 3 – Abstract representation of the position of the virtual file system. 
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2.7 Multitasking 
 

One of the final hurdles in operating system development is multitasking. Once this difficulty 

is overcome, an operating system becomes far more productive. Multitasking is a system’s 

ability to seemingly execute multiple processes simultaneously, creating the impression that all 

of them are running at once. The objective is to switch the CPU among processes so frequently 

that the user can interact with each program while they execute; this concept is known as time-

sharing. In this section, basic CPU-scheduling concepts and policies will be covered.  

 

2.7.1 Scheduling concepts 
 

The scheduler is the part of the kernel responsible for delegating processes a ‘timeslice’ [3], 

which is the amount of time the process is allowed to execute for. Moreover, it decides what 

process should run and if a process should cease running. The act of suspending an executing 

process is known as pre-emption. These pre-emptions in the scheduler are caused by an 

advanced programmable interrupt controller (APIC) that generates an output signal. The timer 

will trigger an interrupt every time it reaches a programmed count [7]. When the scheduler 

receives one of these interrupts, it has to decide if a process should be granted a timeslice and 

the priority in which to delegate them. 

Processes are one of the main pivotal abstractions that an operating system can provide, the 

abstraction being that it is a running program. A process is an instance of a running program, 

with additional values of the registers, program counters, scheduling data and variables [3]. 

When an interrupt occurs, the system needs to reserve the current context of the process that is 

currently running, in order to restore this context at a later date. Essentially, the process is 

paused and then instructed to continue later. Switching the CPU to another process involves 

saving the process state and then restoring the state of another process, this is known as context 

switching [3]. 

Traditionally, each one of the previously discussed processes has its own address space and an 

individual thread of control. A thread is an execution context of all the information a CPU 

needs to execute a sequence of programmed instructions. The thread contains program counters 

and registers to keep track of instruction execution order and current working variables. The 

difference between threads and processes are often misunderstood. Tanenbaum clarifies this 

misconception by stating “Processes are used to group resources together; threads are the 

entities scheduled for execution on the CPU” [3]. Threads provide the means for multiple 

processes to operate in the same environment, independently of one another. 

 

2.7.2 Scheduling Policies 
 

Scheduling policies exist in order to determine the arrangement of queued processes and which 

ones should be allocated time to execute on the CPU. A vast number of methodologies are 
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available for CPU scheduling; therefore, this section will cover only two of the more commonly 

known algorithms, First-Come, First-Served (FCFS) and Round-Robin (RR) scheduling [3].    

FCFS scheduling is one of the more simplistic scheduling algorithms. It functions by 

automatically executing queued requests and process in order of their arrival. This policy can 

be easily organised by implementing a First-In, First-Out (FIFO) queue. After a process has 

finished executing and the CPU becomes free, it is allocated whichever process is at the front 

of the queue. The currently executing process is then deleted from the queue. This algorithm, 

unfortunately, is not preemptive, thus, not applicable for time-sharing systems. It is vital that 

time-sharing system processes get a share of the CPU at regular intervals [3]. 

RR scheduling is specifically designed for time-sharing systems. It operates in a similar fashion 

to the aforementioned FCFS, though with pre-emption; providing the system with the ability 

to switch between processes. First, a small segment of time, known as a time quantum, is set 

from usually ten to one hundred milliseconds. The process queue is then treated as a circular 

queue that the scheduler traverses over, with each process being allocated the CPU at intervals 

for the length of a ‘time quantum’. The circular process queue acts similarly to the FIFO, with 

new processes being added to the back. The scheduler selects the first process from the queue, 

initialises a timer interrupt for after a time quantum, then assigns the process [3]. 
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Figure 4 – Round Robin scheduling policy. 
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Chapter 3 

Design 
 

Developing an operating system is complicated and should be planned and researched into 

great detail before any attempt at implementation is made. The internal modules of an operating 

system should ideally be orthogonal to one another so that certain operations change one thing 

without affecting anything else. There should be a clearly distinguished line that separates 

policies from mechanisms, with mechanisms being handled by the operating system and 

policies by user processes. The operating system is in charge of abstracting these mechanisms 

while allowing programs to use them with ease. As an example, a program should be able to 

dynamically allocate a chunk of memory without having to use functions specific to the 

computer architecture.  

The preceding sections of this report will cover the design of a basic build environment, 

structures and mechanisms specific to the x86 architecture, drivers for hardware, and 

provisioning the user with the ability to execute more than one operation through multitasking. 

There is no absolute path in creating an operating system; the designs presented are a guideline 

and may not be precisely followed during the implementation. 

 

3.1 Environment 
 

A well-built operating system first begins with securing a strong environment upon which to 

build. The environment is essential for reducing complexity and unearthing potential bugs later 

during development. It should be comprised of a set of carefully chosen tools and established 

in a way that will assist the operating system throughout its development. Taking the time to 

set up a firm environment now will help in saving a lot of time and aggravation later on. 

 

3.1.2 Tools 
 

The GNU Compiler Collection (GCC) is a compiler system designed to support various 

programming languages. One of these supported languages is the C Programming Language 

and will be one of the core tools used to develop this operating system. C is a highly portable 

general-purpose language capable of byte-level manipulation and direct memory access, with 

no runtime dependencies.  

GNU Binutils is a collection of binary tools and a required dependency for the GCC package. 

The main tools included in this collection are the GNU linker and the GNU assembler (GAS). 

A linker is a program that takes one or more object files and combines them into a single 

executable. This is a necessary tool for working with a language like C, as C compiles 

individual modules of code into separate object code files. GAS is not a single assembler, but 
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rather a collection of assemblers for each GCC supported platform. It provides a firm and well-

supported assembler to assemble source code into machine code in an object file [10].  

To simplify the process of building large binaries from all the different C object files, GNU 

Make can be employed. It is a tool that controls the generation of executables and will be used 

to construct the operating system into a bootable image. Moreover, it integrates shell 

commands and reduces complexity while allowing the user to organise code and customise 

directory structure. While GCC is platform agnostic, Linux is a preferable environment for 

operating system development. It is much simpler to create a working toolchain using provided 

packages such as ‘build-essential’ to get the tools mentioned above.  

 

3.1.3 Kernel Structure 
 

As you can see from figure 5 below, the directory design here has been largely influenced by 

the Filesystem Hierarchy Standard (FHS) that defines the directory structure in Linux 

distributions. Considering that, the developed operating system should be compliant with this 

standard in order to assist users and software in locating the placement of installed files within 

the system.  

 

 

 

 

 

 

 

The following are descriptions of the child directories branching from the root node: 

/ dir Built bootable image and config files 

/ libs External helper libraries 

/ opt GCC Cross-Compiler tool set 

/ out All compiled object files 

/ kernel Kernel main and subsystems 

/ kernel / boot Static boot files 

/ kernel / util Utility helper tools 

/ kernel / mem Memory management and allocation 

/ kernel / drivers Device drivers 

/ kernel / scheduler Multitasking and processes 

/ kernel / arch Architecture-specific files 

/ kernel / include Kernel header files 
 

Table 1 – Directories and sub-directories with brief descriptions. 

Figure x.x: Kernel directory structure 

Figure 5 – Kernel directory tree structure 
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While this paper focuses specifically on the x86 architecture, the kernel structure shown above 

provides room for modification to allow future support for other architectures if needed. If the 

developer wanted to provide support for both x86 and ARM processor architectures, then they 

could simply place whatever data structures and functions that architecture uses, in its own 

subdirectory; /arm or /x86, within the /arch directory. 

 

3.1.4 Bootloader 
 

Creating and designing a bootloader is a complex project in itself. Instead, it is more 

appropriate to make the kernel support Multiboot-compliant bootloaders. GRUB implements 

this specification and allows a kernel to be loaded by including a header called the multiboot 

header. The Multiboot header is a data structure that should reside in the kernel image to 

provide information to the bootloader about where and how to load the image and additional 

multiboot features. GRUB thankfully handles switching the processors legacy mode from real-

mode to protected-mode, as well as enabling pin A20 which allows all memory to be accessible 

[7]. 

 

3.2  Structures and Mechanisms 
 

Numerous architecture-specific mechanisms and data structures exist within an operating 

system. This section aims to cover structures specific to the implementations of x86 

architecture. The purpose of these functions and data structures is often to provide abstractions 

but often come with additional bonuses like protection, organisation and management.  

 

3.2.1 Descriptor Tables 
 

Descriptor tables are native data structures specific to the x86, that offer address protection and 

management. The structures provide a level of control over the behaviour and characteristics 

of the processor and memory. Three different descriptor tables are maintained, the Global 

Descriptor Table (GDT), the Local Descriptor Table (LDT), and the Interrupt Descriptor Table 

(IDT).  

 

Global Descriptor Table 

This descriptive structure possesses the ability to characterise system segments, though it can 

also hold references to call gates, Task State Segments (TSS), or LDT’s. Each segment 

descriptor entry contains metadata that defines the characteristics of that portion of memory. 

This includes the physical base address, a limit; the segment size, access rights and two bytes 

containing various flags for configuration, identified in figure 6. 
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To reference a segment, a program must load a selector into one of the six-segment registers. 

A selector is a 16-bit structure composed of: a GDT/LDT (Local Descriptor Table) index, 1-

bit identity flag and a 3-bit privilege level. Loading a selector into a segment register allows 

the processor to read and store the GDT/LDT properties. The 32-bit base address is then 

combined with an offset to form a linear address, as shown in figure 7 [3]. 

 

 

 

 

 

 

 

 

 

 

 

While running in protected mode, memory addresses are managed through either the GDT or 

LDT. Both structures protect operations run by the operating system, prohibiting accesses to 

crucial regions of memory. 

 

Interrupt Descriptor Table 

Like its counterpart the GDT, the IDT also contains metadata that describes how the processor 

should respond to various interrupts and exceptions, information on access permissions, and 

which interrupts are enabled. The IDT holds an array of addresses that correspond to interrupt 

routines as well as selectors to the GDT and LDT tables.  

 

G = Granularity bit 

S = Operation size 16 – 32 

L = IA-32e mode only 

P = Present in memory 

DPL = Privilege 0 – 3 

DT = Descriptor type 

TYPE = Segment type and 

protection 

Figure 6 – Global Descriptor Tables (GDT) segment descriptor entry. 

Figure 7 - Transmuting the selector and offset pair into a linear address. 
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To initialise an IDT, a reference point is formed through a base address pointing to the list of 

interrupts in combination with the total number of interrupt routines available. The routines 

referenced, range from peripheral interrupts like the keyboard or Programmable Interval Timer 

(PIT) (see section 3.3.3), system critical interrupts such as double faults or page faults, and task 

interrupts.  

 

3.2.2 Interrupt Service Routines 
 

The x86 architecture is driven by interrupts; external event triggers, that intercept and stop any 

active process from calling an Interrupt Service Routine (ISR). These external events can be 

triggered through both hardware and software. A typical example of a hardware-driven 

interrupt would be a keypress which triggers an Interrupt Request (IRQ1), whereas a software-

driven interrupt would be activated by the int operational code.  

To elaborate, a Programmable Interrupt Controller (PIC) controls the CPU’s interrupts by 

accepting multiple IRQ’s and communicating these in order to the processor. When a keyboard 

registers a keypress, a pulse is sent along an interrupt line (IRQ1) to the PIC. The IRQ is then 

converted to a system interrupt. For the system to know which ISR to call when an interrupt 

occurs, pointers to the ISR are stored in the previously mentioned IDT’s. The IDT’s reduce 

complexity by providing an interface for the interrupts, simplifying the handling of them later. 

The routine would then pass a value that identifies itself to a more dynamic common handler. 

This dynamic handler function must end with the iret operation code; otherwise, a triple fault 

could occur. Once the routine has been serviced, the previously paused process can resume its 

operations.  

 

Figure 9 – Register contents taken from the stack during an Interrupt Service Routine (ISR) 

S = Storage segment 

Type = IDT gate type 

P = Interrupt is present 

DPL = Privilege level 

Figure 8 – Interrupt Descriptor Table (IDT) interrupt descriptor entry. 
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The aforementioned handler function pushes the contents of the stack shown in figure 9 and 

saves them, to provide the system with additional information about the interrupt. The saved 

data contains the contents of the general-purpose registers, along with the interrupt number and 

an error code, allowing the handler to regulate errors itself. 

 

3.2.3 Memory Management 
 

One of the principal features of operating systems is to provide a way to dynamically allocate 

and deallocate memory. This involves providing a way to reference virtual memory space and 

translating it to a physical one. As virtual memory is conceptual, it requires concretion through 

some mechanism or algorithm. Segmentation and Paging are both well-founded solutions for 

implementing virtual memory. 

Segmentation allows physical address space to be non-contiguous. Paging provides this 

advantage and additionally avoids external fragmentation. Implementing paging requires 

physical memory to be divided into fixed-sized contiguous chunks called frames and virtual 

memory to be divided into fixed-sized non-contiguous chunks called pages. This requires the 

use of three fundamental structures: a page directory, a page table, and a page, shown in figure 

10.  

 

 

 

 

 

 

 

 

 

 

 

A page table has 1024 entries, each containing a 4KB aligned physical address to a chunk of 

memory mapped to that location. The pages contain numerous flags that determine features 

such as whether it is present, which mode it is in, and other useful mechanics. The page 

structure and all its descriptive bits are illustrated in figure 11. 

Physical Memory 

Logical Address 

Figure 10 – Logical address translation of a 4KB page using a paging model of logical and 

physical memory. 
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An effective way to allocate frames is to use a large bit map that 

identifies which frames in memory are being used. It is an 

effective and compact storage technique for holding arbitrary bits; 

more efficient than merely holding an array of 1’s and 0’s as it 

uses 32 times less space. Additionally, bit maps have the ability 

to exploit bit-level parallelism and limit memory access. They do 

have disadvantages; however, such as accessing individual bits 

being expensive and complicated, depending on the search 

algorithm used. The bits would need functions to set, test, search 

and clear. 

 

As mentioned earlier, it is vital that an operating system has the ability to allocate and 

deallocate memory effectively. A data structure known as the heap can provide this; it is simply 

a structure for keeping track of memory. The heap holds static data and one big free region; 

known as a hole, which can grow and shrink. When the heap’s available space is used, the 

operating system can request to increase the size of the heap, which moves the heap boundary 

up closer to the stack. The request to increase size comes from the malloc() function and the 

free() function is used to decrease the size and free up memory.  

The variable-partition technique involves maintaining a table that indicates which parts of 

memory are free or occupied. The algorithm explained below uses this technique and is similar 

to Doug Lea’s memory allocator algorithm used in the GNU C library [17]. It is relatively 

simple to implement, which makes it a great choice for the implementation of a small operating 

system. To set the picture, the framework of this algorithm must first be explained.  

Firstly, blocks are contiguous areas of memory that contain data. Holes, on the other hand, are 

like blocks, but their memory is not being used. As you can see in figure 13 below, for every 

hole there is a related descriptor in an index table ordered by hole size. Each of these holes has 

its own header and footer that holds metadata, the header contains information about the hole, 

and the footer contains a pointer back to the header, allowing the unification of holes during 

the freeing process. For error checking, both the header and footer have a magic number field 

in order for them to stand out and be easily located.  

Figure 11 – A page table entry data structure. 

Figure 12 – Physical page frame 

allocation using a bitmap. 
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This algorithm uses the best-fit strategy, which is advantageous in reducing time-usage and 

storage utilization [3]. It operates by simply allocating the first hole that is big enough; the heap 

table is searched through until a free hole big enough for the requested space is available.  

 

3.3  Drivers 
 

To explain simply, a driver is a piece of software that perceives or participates in the 

communication between an operating system and device hardware. To communicate, they send 

data through the computer bus or communications subsystem that the hardware is connected 

to. They are essential to any functioning operating system; without them, the kernel would be 

unable to interface with any hardware. Drivers are either built into the kernel or loaded in from 

external files. The preceding sections of this sub-chapter will cover various built-in drivers that 

are needed for a minimal operating system.  

 

3.3.1 Display  
 

First of all, display drivers are completely essential to showing system information and will be 

one of the first things to approach when beginning operating system development. Even though 

Figure 13 – Ordered heap table point to memory holes and blocks. 
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Video Graphics Array (VGA) is old, it is compatible with most modern graphics cards and 

emulators like BOCHS and QEMU.  

VGA operates with different modes of display that consist of a combination of aspect ratio, 

display resolution, colour depth and refresh rate. The VGA text mode is a basic way to print a 

character to the screen; this is done by writing the character to the text buffer of the VGA 

hardware. The text buffer is a two-dimensional array with customarily 80 columns and 25 rows, 

of which are directly rendered to the screen. Each entry into this array describes a single 

character using the format represented in figure 14. It can be located at the physical address of 

0xB8000 for x86 processes operating in real-mode.  

 

 

 

 

 

3.3.2 Keyboard 
 

Standardised methods exist, for providing keyboards with the ability to communicate with a 

computer. These methods include PS/2, USB and more recently, Bluetooth. Data comes into 

the computer in a binary stream containing keycodes. It is the keyboard drivers’ job to convert 

the raw keycodes sent by the keyboard and format them into an understandable form.  

Port 0x60 can be read to receive data from a PS/2 device. So, when IRQ1 is triggered, the port 

is read, and afterwards, an End of Interrupt (EOI) with command code 0x20, should be sent to 

the interrupt controller. The received scan code can then be converted to its ASCII 

representation using a keymap. Ideally, this is then outputted to the screen via the 

aforementioned graphical drivers.  

 

3.3.3 Programmable Interval Timer (PIT) 
 

PIT chips are designed for microprocessors to perform timing and counting functions with 

three 16-bit registers. Each counter has two input pins; clock and gate, and one pin for the 

output. A 16-bit count is loaded into its register, and then on command, it begins decrementing 

the count until 0, then a pulse is generated that can be used to interrupt the CPU. The chip 

consists of an oscillator, pre-scaler and three separate frequency channels.  

The oscillator used by the PIT chip runs at 1.193182 MHz, this would be identified as the tick 

rate. Channel 0 of the PIT is linked with the PIC chip, allowing it to generate an interrupt 

request (IRQ0). These features can be used to create an infinite series of timer ticks at a chosen 

Figure 14 – character display bit formation for the VGA text buffer. 
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frequency. The PIT also contains channel 1; for refreshing RAM, and channel 2; for controlling 

the PC speaker, though these are unnecessary for a minimal operating system. PIT channels 

are registered to I/O ports; specifically, channel 0 is controlled with port 0x40 and the command 

register with port 0x43.  

 

3.4 Multitasking 
 

Scheduling algorithms can be forked into two divisions with respect to how they handle timer 

interrupts; preemptive and non-preemptive. A non-preemptive scheduler picks a process, and 

that process holds the CPU until it voluntarily releases. On the contrary, preemptive scheduling 

picks a process and allows it to hold the CPU for a set interval. If the process is still executing 

after that interval has transpired, the process is suspended, and another is picked for execution; 

as shown in figure 15. For interactive operating systems, users need a responsive environment. 

Pre-emption is key to stopping processes from monopolizing the CPU and denying its services 

to others. Moreover, it can prevent processes from blocking others out indefinitely, either from 

continuously running or through program errors. 

 

 

It is important to correctly understand how processes are modelled in order to implement them 

later. As discussed earlier in chapter 2.7.1, processes are an instance of an executing program, 

with their own address space, program counter, registers and variables. It is easier to 

conceptualise processes as a collective, running in pseudo-parallel, rather than keeping track 

of how the CPU switches between them.  

Figure 15 – Preemptive scheduler controlling the task execution sequence. 
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When a process is interrupted, an interrupt service procedure starts by saving the register 

contents using the same register structure shown in figure 9. The data is pushed onto the stack 

by the interrupt and stored; the stack pointer is then changed to point to a processes temporary 

stack. This must be written in an assembly language procedure as high-level languages like C 

are incapable of these actions. A routine is then called in C to handle the interrupt type. 

Afterwards, another assembly procedure should start up the new process by loading the 

registers and memory map, with paging enabled, CR3 should be loaded with the page directory.  

Having the process queued in a round-robin is easy to implement, and starvation-free; in that, 

it will not perpetually deny processes from accessing the CPU. A simple yet dynamic function 

can be implemented to add tasks to the end of a queue or list. The list can be iterated over and 

modified during the iteration, to point each task to the next, every time a new task is added. In 

the end, the tail can be pointed back to the head of the queue to recurse.   

 

 

 

 

 

 

Figure 16 – A process state model showing running, ready, blocked and exiting states as well as the 

transitions between. 
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Chapter 4 

Implementation 
 

This section aims to serve as a rough example of how to implement a minimal x86 operating 

system. A detailed overview of the development of key operating system features will be 

covered, focusing mainly towards memory management, memory allocation and multitasking.  

 

4.1 Environment Setup  
 

Firstly, the environment set up is a long, arduous procedure and the examples shown in the 

preceding sub-chapter are not exact. There are many dependencies and setups that must be 

performed, and it would take too long to list and explain them all. 

 

4.1.1 Preparation 
 

Before beginning development of the toolset used to run on the host, certain software 

installations and their dependencies are required. The software can be installed through a 

package manager like the Advanced Packaging Tool (APT) using sudo apt-get: 

- $ sudo apt-get install build-essentials 

- $ sudo apt-get install qemu 

 

This will install GCC, GNU Make and QEMU on your system. Compatible versions of Binutils 

and GCC should be configured and installed on the system used for development. The target 

and prefix must be specified during installation; this can be done as follows: 

 

 

Both GCC and Binutils should be installed similarly to the format above for the cross compiler. 
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4.1.2 Building a Cross-Compiler 
 

The first step to compiling the operating system is to set up a GCC Cross-Compiler for a generic 

target called i686-elf. The compiler should be set up locally at $HOME/opt/cross rather than 

installing it into system directories. To add the new compiler to the shell session, add 

$HOME/opt/cross/bin to your environmental variables path. The GCC executable installed at 

$HOME/opt/cross/bin/i686-elf-gcc can then be used to create programs for the i686-elf target. 

The target provides a toolset aimed towards the System V ABI which allows an easier set up 

for booting the kernel using GRUB and Multiboot.  

 

4.1.4  Build Automation 
 

Now that GNU make has been installed, the build process for the kernel can be automated by 

creating a Makefile. This will be used to compile objects from the kernel code, link them and 

then build a bootable .iso disk image. All of this can be done without having to execute shell 

commands individually.  

The first step of creating a Makefile is to organise any essential directory and compiler 

argument variables that are required for the build. This will allow better control over the kernel 

structure and will make the build process much straightforward to read and understand. The 

code below shows how variables can be used to specify input flag parameters and file paths for 

directories: 

 

 

The GCC target can then be used within the make file to compile objects. In order to use the 

target within the Makefile, “export TARGET=i686-elf” can be copied into the ~/.bashrc file; 

specific to Linux, to set it as an environmental variable. The file is a shell script that runs every 

time a new shell is opened.  
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Each source file is compiled at the destination specified after the -c flag and the object file is 

placed at the destination specified after the -o flag. The -I flag instructs the compiler where to 

look for the header files to be included.  

Once the files are compiled, the objects are linked using a linker script specified by the -T flag 

in the Makefile and then built into a bootable image. Make “phony” targets allow functions to 

be performed by running the name of the target after the make command in the shell. For 

example, running ‘$ make clean’ will invoke a script to remove all build files in the output 

directory. The make file in this implementation has three individual targets that can be called: 

all, test and clean. The ‘all’ target compiles, links and builds. The ‘test’ target runs the operating 

system image using the QEMU emulator for testing.  

 

4.2 Kernel Development 
 

4.2.1 Boot loading 
 

To boot the operating system, this implementation uses three main input files: boot.s, kernel.c 

and linker.ld. The linker file is for linking the boot script and kernel together, and the boot file 

sets the kernel entry point, while also initialising a minimal environment to pass to the kernel.  

The Multiboot specification provides a simple interface between the bootloader and the 

operating system kernel. Anything extra that needs to be loaded; such as an initial ramdisk for 

a file system, can be added in the boot script, as the standard allows external modules to be 

loaded into memory. A magic number should be set and multiboot enabled so that the 

bootloader can locate the starting point of the kernel. The example below shows how flags and 

constants can be set for multiboot:  
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To develop in a high-level language like C, a stack is essential and must be initialised. The 

bottom of the stack should be set first, then stack size allocated, and afterwards the stack top. 

The esp register should be loaded with the pointer to the top of the stack because on x86 

architectures the stack grows down. Once the pointer is set, the main kernel file can be called.  

The two compiled boot script and kernel objects each contain part of the kernel and must now 

be linked together to create the full kernel. The location of various object file sections must be 

defined and placed into the final kernel image; this must be provided in an external customised 

link script like the linker.ld file shown below:  

 

Line 5 tells the bootloader where the kernel entry point is, then the script specifies where the 

various object file sections should be placed in the kernel image. It is conventional to place the 

sections at a physical address space above 1Mb to avoid disrupting other BIOS address 

mappings. A final line at the end of this code stores the end of the multiboot sector in a variable 

for the kernel to know the starting address of free space to allocate memory: 
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Now all the necessary components are available to link the system objects and build a bootable 

kernel image. The grub-mkrescue program can be used to create a bootable CD-ROM image 

that contains the GRUB bootloader and system kernel [13]. A basic grub.cfg file can be used 

to add extra configurations like customised menu entries: 

 

 

 

Once again, GNU Make can be used to automate building the image. A directory is made to 

hold all the necessary files for configuration and image building; then the grub-mkrescue 

program is instructed to build it into a .iso: 

 

 

4.2.2 Descriptors 
 

Now that the source files can be easily formed into a binary image, actual kernel development 

can begin. The first thing that should be done is to initialise the architecture-specific descriptor 

tables. Specifically, the GDT should be the first descriptor table to be initialised in the kernel 

so that privilege levels and memory regions can be defined. The following extract of code 

shows how to set up a list of segment descriptors that form the GDT: 
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To initialise the GDT structure, a pointer base and limit is defined from the size of the struct 

and number of GDT setup entries, allowing the processor to locate it. A null descriptor should 

be set first, then the code segment and data segment descriptors; as is expected by all x86 

architectures. Any other segments like user-level, LDT’s or TSS, can be added after if needed. 

The gdt_setup() function is used to perform the necessary bitwise operations to configure the 

descriptor like the representation shown in figure 6, using the C gdt struct below: 

 

 

 

 

 

 

 

 

The GDT struct is ‘attribute aligned’ to specify that each segment must use a data alignment 

of 4 bytes. This forces the table to be aligned in a specific order within memory. When all the 

segment descriptors have been initialised, an assembly load_gdt() function is called. This 

flushes the gdt_pointer into the CPU using the lgdt operational code. The gdt_pointer struct 

shown above is ‘attribute packed’ to force each structure field to have the smallest possible 

alignment. 

 

4.2.3 Interrupt handling 
 

Before interrupts can be handled, an entry for each interrupt and its corresponding interrupt 

number should be added to the IDT. If an interrupt occurs and there is no IDT entry for it, then 

the CPU will triple fault and reset. The IDT is initialised in a similar manner to the GDT, so 

once again there an idt_setup() function to perform necessary bitwise operations; different from 

the GDT operations. A unique method for each ISR is parsed into the function, to be used by a 

common handler method to perform additional operations specific to that interrupt later on. For 

now, the reference to this function is stored in an IDT entry, that sets the base address as well 

as the segments selector and type: 
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There are 256 possible interrupts on x86 architectures, the first 32 are system critical so 

consequently, need to be mapped. When all the interrupt entries for the IDT are set, the 

idt_pointer can be flushed to the IDT register using the lidt operational code.  

Now that the CPU knows where to find the interrupt handlers, a handler for each interrupt can 

be created. Assembly functions can be used to push the interrupt numbers onto the stack 

because no interrupt data is currently given by the handler. Frustratingly, some interrupts push 

an error code, so there is no common stack frame; therefore, two different routines need to be 

made. GAS’s macro facility makes writing 32 versions of interrupt routines much easier: 

 

 

Interrupts are disabled at the start of each macro; then after pushing the required data onto the 

stack, an ISR assembly handler is jumped to. This will save the processor state before calling 

a higher-level C handler function. After the interrupt is handled, the stack frame; holding the 

registers shown below, is restored. 
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4.2.4 Paging 
 

On the x86, the MMU maps memory using two paging structures known as the paging directory 

and the paging table. Both of these tables should be 4096-byte aligned as they contain four 

1024-byte entries within them. The mentioned structures are implemented in the following C 

structs: 

 

 

 

To enable paging on the x86 architecture, the physical address of a page directory must be 

loaded into the CR3 register. Before enabling, it is important to identity map physical addresses 

with virtual addresses so that when paging is enabled, there are pages that can be accessed 

without triggering a page fault. This implementation loads the CR3 register in the higher-level 

C language before calling an assembly function to set the PG bit in the CR0 register: 

 

 

 

The page table entries themselves; called pages are structured as specified in section 3.2.3. The 

pages frame attribute points to its physical address space and for this implementation, is 

mapped to the page using a bitmap. In comparison to a large array, bitmaps use less space and 

allow easy searching for free frames. There are plenty of other physical memory allocator 

algorithms that could be implemented, though the bitmap is effective for this level of operating 

system development and simple to implement. 
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4.2.5  The Heap 
 

Now that paging is configured, an effective method of allocating and deallocating memory can 

be implemented. The challenge is tackled here by creating a few heap-based data structures to 

control regions of memory. The heap structure itself contains information about its own size, 

role, read or write access, and a table for managing its blocks and holes. The meta_header and 

meta_footer are used to locate the head and foot of a block or hole; depending on the bit set for 

the header structs free attribute: 

 

 

 

 

 

 

 

 

 

The heap table itself is ordered by comparing the values of the hole or block headers size 

attribute and arranging them in ascending order. It is insertion sorted and remains in a sorted 

state between calls; the unknown_t type is used to store anything that can be cast to void*; like 

a uint32_t or any pointer. The ordering behaviour is encapsulated within the order_t function 

pointer to compare the size of holes or blocks: 

 

 

Because we are using paging, to allocate space for the heap, pages must be allocated before 

initialisation. Once the pages have been mapped to the physical heap address frames, the 

interrupt handler for page faults can be registered and the page directory loaded. After all this, 

the heap can finally be initialised with paging enabled, and no page faults exceptions should 

be thrown.  
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Before the heap is initialised, memory can still be allocated using memory allocation by 

placement address. This is optimal for time and space allocations but does not combat the issue 

of deallocation. This implementation uses two variations of the well known C library malloc() 

function: malloc_virt(); to allocate virtual memory, and malloc_phys(); to allocate physical 

memory. In malloc_virt() the size requested is simply allocated in the kernel heap and then an 

address pointer is returned. The malloc_phys() function, on the other hand, will assign a page 

to a page frame using a parsed physical address parameter, before returning the address pointer. 

 

 

 

The allocate() function for the heap works by firstly, searching the heap table to find the 

smallest hole that can fit the size requested. If there is no hole large enough, then the heap is 

instructed to expand; bounded by a max size, before recursing and trying to find a hole again. 

If the smallest hole has a lot of free space, then it is split in half, and a new hole is written to 

the heap table. At the end of all this resizing and hole formatting, the address plus the size of 

the meta_header is returned to the user.  

The deallocate() function, is a little more complicated. It involves a unifying algorithm that 

takes two unallocated adjacent holes and amalgamates them back into one larger hole. When 

deallocating a block, look at what is left of the block, if it’s a footer, then follow the footer 

pointer to the header. If the headers free attribute is not set then the size attribute can be 

modified by adding the block being merged. The headers pointer can then be changed to point 

to the previous blocks footer instead. Unifying from the right is slightly different but follows 

the same principle.  
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4.2.6 Multitasking 
 

Lastly, one of the final hurdles of creating an operating system is providing it with the ability 

to run multiple tasks seemingly at once. This begins by defining a C task struct to hold all the 

attributes of a process. The reg_state *r pointer should contain the saved state of the processor 

registers before a task interrupt; because paging is enabled, the physical address of whatever 

directory the task is in should be saved in ‘cr3’. To implement the round-robin scheduling 

policy later, the task must contain a pointer to the next task. The function pointer is simply to 

pass an operation, which in this case, is to display the stored task message. 

 

 

 

Conveniently, there already exists a mechanism to retrieve the register state when a task needs 

to switch. The common C interrupt handler created in section 4.2.3, already pushes the required 

contents onto the stack. Therefore, when an IRQ0 is triggered by the hardware timer, the task 

state can be saved and switched. With a frequency of 100hz set, an interrupt will occur every 

0.01 second, so when the remainder of the number of ticks divided by the set timeslice constant 

is equal to 0, a task switch is triggered. This means that if the timeslice is set to 100, a task 

switch will be triggered every second.  
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Now that task switching is activated, the switch_tasks() function can take the saved register 

structure as an argument when called by the IRQ0 handler. It operates by firstly, copying the 

saved register state from the interrupt event to the task structs reg_state *r, using the 

copy_memory() function. It will then check if the current task is set and if so, sets it to execute 

and sets the current task equal to the next queued task, for when the function recurs. After, it 

copies the current processes register state back to the stack and switches the page directory to 

the directory stored in the current task, demonstrated by the following: 
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Chapter 5 

Testing 

 
Now that all the features of a minimal x86 operating system have been implemented and a 

bootable image has been built, testing can commence. All testing in this paper is done using 

QEMU, although there are other emulating platforms that can be used, such as BOCHS. Each 

emulator has its own unique simulations and flexible configurations that can be taken 

advantage of at different stages of development. However, QEMU allows quick emulation and 

is suitable for testing a minimal operating system. The following sub-chapters have been 

selected for testing because they are milestones in operating system development; together, 

they supply the necessary attributes of a minimal system. 

 

5.1 Interrupt Handling 
 

To validate that the minimal operating system can correctly handle an interrupt, a software 

thrown interrupt can be used for testing. By entering ‘__asm__ volatile(“int $0x08)’ in the 

kernel.c file after interrupts have been initialised; a double fault exception will be triggered. As 

you can see in figure 17, the fault is handled, and a double fault exception function that is 

registered with interrupt eight is called. This displays useful register information that can be 

used for debugging. 

 

Figure 17 – A screenshot of BenOS handling a double fault exception. 
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5.1.2 Paging 
 

To test paging, a variable with a pointer can be assigned to an illegal address space; such as 

0xAAAAAAAA, that has not been assigned a page. When the variable pointing to that address 

space is used, it will cause a page fault exception which is caught and handled in the paging.c 

code. Useful information about why the fault occurred is then outputted to the terminal and 

system execution is stopped to prevent any further damage.  

 

5.1.3 Memory Allocation 

 
To evidence the minimal operating systems ability 

to allocate and deallocate memory, a few lines of 

code had to be produced; shown in figure 19. The 

code assigns various sized chunks of memory to 

variables: a, b, c, and d. After allocating memory to 

the first three variables, their starting addresses are 

outputted to the terminal. Two of those variables are 

then released from memory using the deallocate() 

function. The final variable is assigned and outputted 

to the terminal for assessment. In figure 20, the 

terminal shows the start address of each allocated 

chunk. The address of variable d confirms that the 

variables b and c where deallocated because the 
Figure 19 – A screenshot of the code used to 

allocate and deallocate memory. 

Figure 18 – A screenshot of BenOS handling a page fault exception 
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starting address is 0xB0080030 which is 16 bytes from the starting stack address of 

0xB008000C. 

 

Figure 20 – A screenshot of BenOS dynamically allocating and deallocating memory from the heap. 

 

5.1.4 Scheduling 
 

As a demonstration of the minimal operating systems ability to switch between processes, a 

large time slice; two seconds, was set in order to visualise the process switching clearly. The 

process id and starting address of the tasks dedicated address spaces are outputted to the 

terminal to for context. Each task is allocated a 0x1000 sized chunk of address space and is 

placed in a dynamic round-robin queue for execution. 

 

Figure 21 – A screenshot of BenOS switching between processes using the round robin policy. 
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Chapter 6 

Conclusion 
 

6.1  Design vs Implementation 
 

In brief, the design was almost entirely followed by the implementation, though a few decision 

were changed for practicality. For instance, the memory management techniques discussed in 

section 3.2.3 were implemented as planned, whereas the multitasking implementation did not 

cover every detail specified by the section 3.4 design. The implementation could have included 

process states and threads as mentioned, though due to a shortage of time, said inclusions could 

not be made functional. In the end, the design was mostly followed, though a few minor 

components had to be missed in order to finalise the project. 

 

6.2 Future Improvements 
 

As operating systems are substantial in both size and versatility, there is ample opportunity for 

improvement and further development. One of the main features that this implementation 

misses out on is a virtual file system. Support could have been added for a filesystem; such as 

an ext2 or tar, to manage secondary storage, though lack of time prevented this. It would have 

been practical in helping demonstrate the capabilities of multitasking by having processes that 

read and display files within the filesystem. If development were to continue, a file system 

would certainly be implemented, as an operating system should be capable of permanently 

storing data. 

To follow convention and allow the operating system to be compatible with existing software, 

a few function names could be altered to match the C standard library. For example, the 

set_memory() and copy_memory() functions can be changed to the C standard memset() and 

memcpy(). Coding standards reduce program complexity and thereby reduce errors, allowing 

better maintainability and improved consistency. Additionally, the operating system offers 

compatibility for a user-level through privilege settings in memory management and 

architecture, yet no actual user space exists. A multi-user environment should be supplied to 

improve system security and to provide a safer working environment with personal secondary 

storage. 

To summarise, there are endless possibilities for improvement when developing an operating 

system. A few areas for growth and development have been mentioned above, though a 

multitude of additional topics could have been covered: support for other architectures, demand 

paging, enhanced graphics, networking, a user login screen and audio, are just a few examples 

of areas for improvement or expansion. So, whether it be to better performance or to improve 

functionality, there is always room for modification and further development within an 

operating system. 
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6.3 Review of Project Aims 
 

• Provide a synopsis of the attributes that form an operating system. 

The background section of this paper provides detailed documentation about operating 

system core features. The paper clearly explains these concepts and hopefully supplies the 

reader with a strong foundation of knowledge that they can use for the preceding chapters. 

Unfortunately, operating systems are substantial, and therefore, all possible attributes could 

not be covered considering the time constraints. Research into networking, audio and video 

are a few examples of concepts that could have been covered if more time was available. 

So, in summary, the objective was fulfilled by supplying an overview of a minimal system’s 

attributes, though more coverage could have been provided.  

 

• Investigate the necessary requirements needed for a basic operating system to 

function for a specific architecture. 

Chapter 2 of this paper discusses the advantages of developing with the x86 architecture. It 

covers various protection and supporting features provided by the architecture and 

discusses why it would be ideal to focus development towards it. Although it is made clear 

from the beg that the system would be developed for the x86, it would have been 

informative to analyse other existing architectures also. Moreover, the kernel structure set 

up in Chapter 3 provides room for modification, which allows support for other 

architectures and provides the means for further expansion and support. Overall, the 

primary objective was satisfied, and the reader is provided with requirements to deliver a 

minimal operating system for a specific architecture.  

 

• Review the previously researched requirements and formulate a rough design 

with justified decisions. 

After analysing the requirements for a minimal operating system, Chapter 3 provides 

instructions on how to formulate a plan for development. The approaches given to tackling 

certain design decisions have been justified and explained. It is intended only to be a rough 

guide that aims to assist by providing justified approaches to various operating system 

concepts. Occasionally, the design and researched requirements do seem to merge, though 

this is because, at times, a minor amount of additional background information is required 

to explain and justify why the design is the way it is. To conclude this aim, the groundwork 

for developing an operating system is provided, with reasons justified, although at times 

the difference between the design and background sections are not completely clear-cut. 

 

• Produce a procedural guide and implementation of a minimal operating system, 

including dynamic memory allocation and effective multitasking.  

In Chapter 4, a step-by-step guide of how to implement a minimal operating system is 

supplied, giving a detailed review of how to develop key operating system features with 
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examples, chronologically. Most importantly, a great depth of coverage on dynamic 

memory management and effective task scheduling is provided; the core hurdles in 

developing an effective operating system. Regrettably, no time was available to cover one 

of the very first steps after building the environment, the graphical display. An additional 

section could have been added that provides example code of how to display graphics on-

screen. To summarise, a detailed procedural guide is provided with the mentioned core 

features, though a few intermediary steps in-between would help the reader transition 

between stages of development.  

 

• Examine whether the implemented operating system conforms to the proposed 

design and discuss how it could be improved in the future. 

The comparison of design and implementation is covered in section 6.1.1, of which 

addresses a few minor issues with the design of multitasking and the manner in which it 

was implemented. After assessing the two chapters, the preceding section 6.1.2, focuses on 

what improvements could be made and how the operating system can be developed further. 

Due to operating system development being such a vast topic, there exist many ways that 

development could be extended. Therefore, only a few examples are explained in detail and 

others listed, as it is a large topic to cover. 

 

6.4 Final Comments 
 

In summary, with all the primary aims of this paper satisfied and a functioning minimal 

operating system built, the project can be successfully concluded. Though it has been 

challenging and frustrating at times, I am grateful for the opportunity to tackle it. It has left me 

with a feeling of self-accomplishment and a much greater depth of understanding. Moreover, 

my programming skills have been greatly enhanced, and my understanding of C as a powerful 

and manipulative language has advanced. I will continue the development of BenOS in my 

own time for self-learning and in the hope that it will progress into something greater than it 

currently is. I hope that one day this project can be used by others to assist and enlighten them 

about operating system concepts and development.  
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Feedback comments
FIRST MARKER : Comments on written report:b'The report has a good structure and is generally well 
written, although there is some odd wording in places.\r\rThe report has a good degree of technical 
depth but is too focused on guiding the reader through the development and seems to miss context 
and lacks a proper narrative on why particular decisions were made. The implementation section, for
example, seems more a discussion on the build process than on realizing a design. The split between
design and implementation should also be more distinct.\r\rThe discussion of testing is very brief, 
which is odd considering the considerable testing that must have been done throughout the 
project.\r\rThere is a lot in the report, but it seems rushed and should be refocused.' --- Viva 
Comments:b'This is a complex project that involved navigating some significant pitfalls and it is clear
that a lot is working. It is a significant achievement getting so far -- it is a shame that time ran out 
when it did as there is not much more to do before this would be a usable system.\r\rThe viva 
included a presentation and demonstration run over MS Teams. The presentation covered the 
background to the project, the major elements within the system, and ideas for future work. Ben 
came across well and made some good points on both design and implementation.\r\rThe 
demonstration included booting a PC with BenOS, VGA output, keyboard input, interrupts, task 
scheduling, paging, and heap allocation. It was interesting to see Ben had moved the entire build 
chain from Linux to MS Windows to make it easier to demonstrate on Teams.' SECOND MARKER: 
Comments on written report:b'A comprehensive report, documenting the principles upon which 
operating systems are founded, and how the student applied them to create a minimalist operating 
implementation for the x86 architecture. \r\rThe student documents the implementation of a 
keyboard driver, VGA (text mode) graphics driver, memory management algorithms (MMU protected 
virtual heap and stack), and preemptive scheduler. The student also documents plans for a thread 
scheduler and file system implementation.\r\rThe report is clear and concise, and records the results 
of a highly challenging piece of work. However, it is rather implementation focussed and would have 
benefited from deeper reasoning around the design alternatives that could have been chosen, and a 
more thorough evaluation.\r' --- Viva Comments:b'An excellent viva, given via a Teams meeting using
screen share. The student gave a concise and focused presentation that clearly outlined the work 
undertaken. This was followed by a demonstration of the scheduler and memory allocator developed.
This was illustrated through practical test cases running on a Qemu x86 emulation.\r\rThe student 
provided a clear and objective demonstration and responded well to all questions posed.' 
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